LogoLogo
WebsiteApp (Coming Soon)
  • β›΅Welcome to Voyage
  • Whitepaper
    • 🌊Overview
    • 🧭Definitions
    • 🏝️Voyage Lend
      • Tranche Model
      • Tokenization
      • Withdrawal Mechanism
    • πŸ΄β€β˜ οΈVoyage Buy
      • Core Mechanics
      • Interest Rate Model
      • Repayment
      • Liquidation
    • 🐬Voyage Flip
    • πŸ–οΈSupported Marketplaces
    • 🎣Supported Collections
    • πŸ—ΊοΈRoadmap
  • Guides
    • 🐚User Guide
    • πŸ“ΏFAQs
  • Others
    • βš“Partners
    • ✍️Audits
    • πŸͺ™No Tokens
  • Official Links
    • 🎨Download Voyage Logo
    • πŸ”₯Voyage App + Lend
    • 🦜Socials
    • 🧭Github Repository
    • πŸ“œContracts
Powered by GitBook
On this page

Was this helpful?

  1. Whitepaper

Definitions

This page contains a table of definitions used to rigorously and unambiguously define key parts of protocol behavior, and may be updated from time to time.

Variable
Description
Notes

Total outstanding principal.

Total outstanding debt.

Cash balance of the senior tranche.

Balance of the senior tranche contract returned by the underlying ERC20 asset when balanceOf is called.

Cash balance of the junior tranche.

Balance of the senior tranche contract returned by the underlying ERC20 asset when balanceOf is called.

Assets held by the senior tranche, including loans (principal).

Assets held by the junior tranche.

Optimal utilisation rate.

Percentage expressed in ray.

Utilisation rate (actual).

Base borrow rate.

The base interest rate. Set by governance.

Set by governance.

Current slope rate. New borrows receive this rate.

Average borrow APR

Optimal tranche liquidity ratio

Set by governance.

Current tranche liquidity ratio

Optimal senior yield allocation

Percentage, expressed in basis points.

Optimal junior yield allocation

Current actual income allocation, PID-like. Presently not in use.

Current lender interest rate

Senior tranche effective interest rate

Junior tranche effective interest rate

Total supply of senior tranche shares

vToken totalSupply()

Total supply of junior tranche shares

vToken totalSupply()

Exchange rate of shares to the underlying asset

Asset floor price at purchase block height

Provided by Oracle

Asset floor price at current block height

Provided by Oracle

Return value of balanceOf()

A drawdown by a Vault.

-

Current Vault credit limit.

Liquidation threshold.

Liquidation bonus.

Loan-to-value.

Current block timestamp

-

Seconds per year

Seconds per month

PreviousOverviewNextVoyage Lend

Last updated 2 years ago

Was this helpful?

​

where there are ​​ Vaults

​

​where there are ​Vaults

​

​

​

​

Slope when ​

​

​

​

​

​

​

Deviation of from . Presently not in use.​

​

​

​

​

​

​

​

​

​

​

where is one of junior or senior

​

​

Gross asset value of a Vault , by current floor price. Presently not in use.

where is the set of unredeemed non-fungible assets​ in the Vault.

​

Underlying ERC20 balance for a Vault .

​

​

​

Principal component of a drawdown ​

​

Interest rate applied to .​

where is the prevailing slope rate at time of origination ​

​

Interest component of .

​

​

The loan term of in seconds.

Always a multiple of .​

​

The payment interval of in seconds.

Always a multiple of ​

​

Number of payment intervals per year for ​.

​

Number of instalments needed to repay the principal and interest for .​

​

Interest component of an instalment at period ​.

​

Principal component of an instalment at period ​.

​

Total instalment amount at period .

​

Timestamp of due date of the next instalment of ​.

​

​

Time past due for expressed in seconds.

​

​

Total repayments made toward ​.

where is the number of repayments that have been made.

​

Total debt of a Vault , including interest.

for Vault with ​ active Drawdowns.

​

Total principal debt of a Vault

for Vault ​ with ​ active Drawdowns.

​

Total interest owed by a Vault

​

​

​

Currently set to

​

Currently set to

​

Currently disabled.

​

​

🧭
BpB_pBp​
Bp=βˆ‘i=0nBPx\displaystyle B_p=\sum^n_{i=0}BP_xBp​=i=0βˆ‘n​BPx​
nnn
BtB_tBt​
Bt=βˆ‘i=0nBCx\displaystyle B_t=\sum^n_{i=0}BC_xBt​=i=0βˆ‘n​BCx​
nnn
CseniorC_{senior}Csenior​
CjuniorC_{junior}Cjunior​
LseniorL_{senior}Lsenior​
Lsenior=Csenior+BpL_{senior} = C_{senior} + B_pLsenior​=Csenior​+Bp​
LjuniorL_{junior}Ljunior​
Ljunior=CjuniorL_{junior} = C_{junior}Ljunior​=Cjunior​
UoptimalU_{optimal}Uoptimal​
UUU
U={0Β ifΒ Lsenior=0BtLseniorΒ elseU = \begin{cases} 0\ & if\ L_{senior} = 0 \\ \frac{B_{t}}{L_{senior}}\ & else \end{cases}U={0Β Lsenior​Bt​​ ​ifΒ Lsenior​=0else​
RbR_{b}Rb​
Rslope1R_{slope1}Rslope1​
U>UoptimalU > U_{optimal}U>Uoptimal​
RstR^t_{s}Rst​
Rst={Rb,ifΒ U≀UoptimalRb+UUoptimalRslope1,ifΒ U>UoptimalR^{t}_{s} = \begin{cases} R_{b}, & if\ U \leq U_{optimal} \\ R_{b} + \frac{U}{U_{optimal}}R_{slope1}, & if\ U \gt U_{optimal} \end{cases}Rst​={Rb​,Rb​+Uoptimal​U​Rslope1​,​ifΒ U≀Uoptimal​ifΒ U>Uoptimal​​
RΛ‰b\bar R_bRΛ‰b​
RΛ‰b=βˆ‘i=0nRinPiBp\bar R_b = \displaystyle\frac{\sum_{i=0}^nR^n_i P_i}{B_p}RΛ‰b​=Bpβ€‹βˆ‘i=0n​Rin​Pi​​
LiRoptimalLiR_{optimal}LiRoptimal​
LiRtLiR_tLiRt​
LiRt=LseniorLjunior\displaystyle LiR_{t} = \frac{L_{senior}}{L_{junior}}LiRt​=Ljunior​Lsenior​​
E(LiR)E(LiR)E(LiR)
LiRtLiR_tLiRt​
LiRoptimalLiR_{optimal}LiRoptimal​
E(LiR)=LiRoptimalβˆ’LiRtE(LiR) = LiR_{optimal} - LiR_tE(LiR)=LiRoptimalβ€‹βˆ’LiRt​
YseniorY_{senior}Ysenior​
YjuniorY_{junior}Yjunior​
1βˆ’Ysenior1 - Y_{senior}1βˆ’Ysenior​
YtY_tYt​
Yt={YifLiRt=LiRsYoptimalβ‹…11+E(LiR)LiRoptimalifE(LiR)>0Yoptimalβ‹…1+E(LiR)LiRoptimalifE(LiR)<0\displaystyle Y^t = \begin{cases} Y & if LiR_t = LiR_{s} \\ Y_{optimal} \cdot \displaystyle\frac{\displaystyle1}{\displaystyle1+\frac{E(LiR)}{LiR_{optimal}}} & if E(LiR) \gt 0 \\ Y_{optimal} \cdot 1+\displaystyle\frac{E(LiR)}{LiR_{optimal}} & if E(LiR) \lt 0 \end{cases}Yt=βŽ©βŽ¨βŽ§β€‹YYoptimal​⋅1+LiRoptimal​E(LiR)​1​Yoptimal​⋅1+LiRoptimal​E(LiR)​​ifLiRt​=LiRs​ifE(LiR)>0ifE(LiR)<0​
RlR_lRl​
Rl=RbUR_l = R_bURl​=Rb​U
RseniorR_{senior}Rsenior​
Rsenior=Rlβ‹…YseniorR_{senior} = R_l \cdot Y_{senior}Rsenior​=Rl​⋅Ysenior​
RjuniorR_{junior}Rjunior​
Rjunior=Rlβ‹…Yjuniorβ‹…LiRtR_{junior} = R_l\cdot Y_{junior}\cdot LiR_{t}Rjunior​=Rl​⋅Yjunior​⋅LiRt​
SseniorS_{senior}Ssenior​
SjuniorS_{junior}Sjunior​
Ex(t)Ex(t)Ex(t)
Ex(x)=Lx/SxEx(x)=L_x/S_xEx(x)=Lx​/Sx​
xxx
FVoFV_oFVo​
FVtFV_tFVt​
GAVxGAV_xGAVx​
xxx
GAVx=Ξ£i∈liensFVt+VTGAV_x = \Sigma_{i \in liens}FV_t + VTGAVx​=Ξ£i∈liens​FVt​+VT
liensliensliens
VTxVT_xVTx​
xxx
DRΞ±DR_{\alpha}DRα​
DRΞ±=(P,R,Term,Epoch,NPer,Pmt)DR_{\alpha} = (P,R,Term,Epoch,NPer,Pmt)DRα​=(P,R,Term,Epoch,NPer,Pmt)
PΞ±P_\alphaPα​
DRΞ±DR_{\alpha}DRα​
RΞ±R_\alphaRα​
DRΞ±DR_{\alpha}DRα​
RΞ±=RstR_\alpha = R^t_sRα​=Rst​
RstR^t_sRst​
ttt
IΞ±I_\alphaIα​
DRΞ±DR_{\alpha}DRα​
IΞ±=RΞ±PΞ±I_\alpha=R_\alpha P_\alphaIα​=Rα​Pα​
TermΞ±Term_\alphaTermα​
DRΞ±DR_{\alpha}DRα​
TmonthT_{month}Tmonth​
EpochΞ±Epoch_\alphaEpochα​
DRΞ±DR_{\alpha}DRα​
TmonthT_{month}Tmonth​
EPY(Ξ±)EPY(\alpha)EPY(Ξ±)
DRΞ±DR_{\alpha}DRα​
EPY(Ξ±)=TyearEpochΞ±\displaystyle EPY(\alpha)=\frac{T_{year}}{Epoch_\alpha}EPY(Ξ±)=Epochα​Tyear​​
NPer(Ξ±)NPer(\alpha)NPer(Ξ±)
DRΞ±DR_{\alpha}DRα​
NPer(Ξ±)=TermΞ±EpochΞ±NPer(\alpha) = \displaystyle\frac{Term_\alpha}{Epoch_\alpha}NPer(Ξ±)=Epochα​Termα​​
IPmti(Ξ±)IPmt_i(\alpha)IPmti​(Ξ±)
iii
IPmti(Ξ±)=I(Ξ±)NPer(Ξ±)\displaystyle IPmt_i(\alpha)=\frac{I(\alpha)}{NPer(\alpha)}IPmti​(Ξ±)=NPer(Ξ±)I(Ξ±)​
PPmti(Ξ±)PPmt_i(\alpha)PPmti​(Ξ±)
iii
PPmti(Ξ±)=PΞ±NPer(Ξ±)\displaystyle PPmt_i(\alpha)=\frac{P_\alpha}{NPer(\alpha)}PPmti​(Ξ±)=NPer(Ξ±)Pα​​
Pmti(Ξ±)Pmt_i(\alpha)Pmti​(Ξ±)
iii
Pmti(Ξ±)=IPmti(Ξ±)+PPmti(Ξ±)Pmt_i(\alpha) = IPmt_i(\alpha)+PPmt_i(\alpha)Pmti​(Ξ±)=IPmti​(Ξ±)+PPmti​(Ξ±)
TiΞ±T^\alpha_{i}Tiα​
DRΞ±DR_{\alpha}DRα​
TiΞ±={T+EpochΞ±ifΒ i=0Tiβˆ’1Ξ±+EpochΞ±elseT^\alpha_{i} = \begin{cases} T+Epoch_\alpha & if \ i = 0 \\ T^\alpha_{i-1}+Epoch_\alpha & else \end{cases}Tiα​={T+Epochα​Tiβˆ’1α​+Epochα​​ifΒ i=0else​
TPD(Ξ±)TPD(\alpha)TPD(Ξ±)
DRΞ±DR_{\alpha}DRα​
TPD(Ξ±)={0ifΒ T≀TiΞ±Tβˆ’TiΞ±elseTPD(\alpha) = \begin{cases} 0 & if \ T \leq T^\alpha_{i} \\ T - T^\alpha_{i} & else \end{cases}TPD(Ξ±)={0Tβˆ’Tiα​​ifΒ T≀Tiα​else​
REΞ±tRE^t_\alphaREΞ±t​
DRΞ±DR_{\alpha}DRα​
REat=βˆ‘i=1nPmt(Ξ±)\displaystyle RE^t_a = \sum_{i=1}^{n}Pmt(\alpha)REat​=i=1βˆ‘n​Pmt(Ξ±)
nnn
BCxBC_xBCx​
xxx
BCx=βˆ‘i=0nPmt(i)\displaystyle BC_x=\sum^{n}_{i=0} Pmt(i)BCx​=i=0βˆ‘n​Pmt(i)
xxx
nnn
BPxBP_xBPx​
xxx
BPx=βˆ‘i=0nPi\displaystyle BP_x=\sum^{n}_{i=0} P_iBPx​=i=0βˆ‘n​Pi​
xxx
nnn
BIxBI_xBIx​
xxx
BIx=BCxβˆ’BPxBI_x = BC_x-BP_xBIx​=BCxβ€‹βˆ’BPx​
BmaxB_{max}Bmax​
Bmax=max(FVtβ‹…(1+log⁑2(1+Repvx)),FVt)B_{max} = max(FV_t \cdot (1 + \log_2(1+{Rep^x_v})), FV_t)Bmax​=max(FVt​⋅(1+log2​(1+Repvx​)),FVt​)
LFLFLF
111
LBLBLB
0.10.10.1
LTVLTVLTV
HF=LTVβ‹…LFHF = LTV\cdot LFHF=LTVβ‹…LF
TTT
TyearT_{year}Tyear​
315360003153600031536000
TmonthT_{month}Tmonth​
259200025920002592000